人才队伍

专家详情页

所在位置: 首页 > 人才队伍 > 专家详情页

字体: 【大】 【中】 【小】

周   畅

办公室:主楼280 传真:010-62333447 职称:副研究员 Email:changzhou@ustb.edu.cn

研究方向

主要从事负热膨胀及高性能复合材料合成、机理研究;基于同步辐射、中子散射等大科学装置开展负热膨胀和低膨胀机理研究;面向国家重大需求,实现了高精密行业关键材料国产化自主制备。


教育经历

2012/09-2017/10  哈尔滨工业大学 材料学 博士

2014/10-2016/11 美国密歇根大学材料科学与工程联合培养博士

2010/09-2012/07 哈尔滨工业大学 材料学 硕士

2006/09-2010/07  哈尔滨工业大学 材料科学与工程 学士


工作经历

2022/01 至今 北京科技大学 新金属材料国家重点实验室 副研究员

2017/12-2021/12  哈尔滨工业大学 材料科学与工程学院助理研究员

2021/03-2021/12 哈尔滨工业大学 材料科学系 研究生培养秘书


奖 励

2021年 省部级科学技术进步一等奖,复合材料微结构稳定化设计制备关键技术与应用

2018年 有色金属学会青年科技论坛,优秀报告奖


学术兼职

中国复合材料学会 会员

中国机械工程学会 会员

国际学术期刊《Composites Part B》、《Carbon》、《Applied Surface Science》、《Journal of Alloys and Compounds》、《Inorganic Chemistry》、《Ceramics International》等审稿人

Microstructures 杂志青年编委,Materials、Metal、Frontiers in Chemistry 等杂志 Guest editor.


论文著作

2023

[1]  Chen L, Zhou C*, Zhu L, et al. Compromise Optimized Superior Energy Storage Performance in Lead‐Free Antiferroelectrics by Antiferroelectricity Modulation and Nanodomain Engineering[J]. Small, 2023: 2306486.

[2]  Wu Y#, Zhou C#, Wu R, et al. Synergistic strengthening of Al–SiC composites by nano-spaced SiC-nanowires and the induced high-density stacking faults[J]. Composites Part B: Engineering, 2023, 250: 110458.

[3]  Zhang W, He L, Zhou Y, Tang D, Ding B, Zhou C*, Paul J D*, Mohammad K N*, Li X*. Multiple roles of negative thermal expansion material for high-performance fully-air processed perovskite solar cells[J]. Chemical Engineering Journal, 2023, 457: 141216.

[4]  Zhou C, Liu C, Zhou Y, et al. Superior overall performance of zero thermal expansion ZrW2O8/Al–Si composite[J]. Ceramics International, 2023, 49(21): 34074-34082.

[5]  Song Y, Xu M, Zheng X, Zhou C, Shi N, Huang Q, ... & Chen, J. A new method to enhance the magnetocaloric effect in (Sc,Ti) Fe2 via magnetic phase separation[J]. Journal of Materials Science & Technology, 2023, 147: 102-111.

[6]  Zhou C, Zhong H, Lu H, et al. Sintering pressure effect on the performances of near-zero thermal expansion xLFCS/Cu metal matrix composites[J]. Ceramics International, 2023.

[7]  Zhou Y, Zhou C*, Wu Y, et al. Near-zero thermal expansion in a wide temperature range of lightweight mMnZnSnN/AlSi with high thermal conductivity[J]. Ceramics International, 2023, 49(22): 34472-34480.

[8]  Shi N, Song Y, Zhou C*, et al. Giant negative thermal expansion in Zn2-xCuxP2O7 ceramics via microstructure effect[J]. Ceramics International, 2023, 49(1): 294-300.

[9]  Chen L, Li F, Gao B, Zhou C, Wu J, Deng S, ... & Chen J. Excellent energy storage and mechanical performance in hetero-structure BaTiO3-based relaxors[J]. Chemical Engineering Journal, 2023, 452: 139222.

2022

[1]  Pang X, Song Y*, Shi N, Xu M, Zhou C*, Chen J. Design of zero thermal expansion and high thermal conductivity in machinable xLFCS/Cu metal matrix composites[J]. Composites Part B: Engineering, 2022, 238: 109883.

[2]  Zhou C, Zhou Y, Liu S, et al. Lightweight and near-zero thermal expansion ZrW2O8-SiCnw/Al hybrid composites[J]. Journal of Alloys and Compounds, 2022, 907: 164444.

[3]  Wang Z, Ma Y, Sun K, Zhang Q*, Zhou C*, Shao P, ... & Wu G. Enhanced ductility of Ti3AlC2 particles reinforced pure aluminum composites by interface control[J]. Materials Science and Engineering: A, 2022, 832: 142393.

[4]  Wu Y, Liu Y, Kuang Z, Hussain M, Yang W, Zhou C*, Wu G*. High-quality boron carbide nanowires prepared by catalyst-free template growth method[J]. Ceramics International, 2022, 48(15): 21846-21855.

[5]  Zhou Y, Zhou C*, Wang Z, et al. The effect of interface reaction on the thermal and mechanical properties of Mn3.2Zn0.5Sn0.3N/Al composites[J]. Ceramics International, 2022, 48(18): 25826-25832.

[6] Xu M, Song Y, Xu Y, Sun Q, Long F, Shi N, Qiao Y, Zhou C, Ren Y, Chen J. High-Temperature Zero Thermal Expansion in HfFe2+ δ from Added Ferromagnetic Paths. Chemistry of Materials, 2022, 34(21): 9437-9445.

~2021

[1] Zhou C*, Zhou Y, Zhang Q, et al. Near-zero thermal expansion of ZrW2O8/Al–Si composites with three dimensional interpenetrating network structure[J]. Composites Part B: Engineering, 2021, 211: 108678.

[2] Liu S#, Zhou C#, Wang Y, et al. Ce-substituted nanograin Na3Zr2Si2PO12 prepared by LF-FSP as sodium-ion conductors[J]. ACS applied materials & interfaces, 2019, 12(3): 3502-3509.

[3] Sun Y, Zhou C*, Zhao Z, et al. Microstructure and mechanical properties of Ti2AlC particle and in-situ TiAl3 reinforced pure Al composites[J]. Materials Science and Engineering: A, 2020, 785: 139310.

[4] Sun Y, Zhou C*, Zhao Z, et al. High plasticity achieved by spark plasma sintering method in aluminum matrix composites reinforced with Ti2AlC particles[J]. Materials Characterization, 2021, 177: 111204.

[5] Zhou C*, Zhang Q, Tan X, et al. Fully-dense Mn3Zn0.7Ge0.3N/Al composites with zero thermal expansion behavior around room temperature[J]. Materialia, 2019, 6: 100289.

[6] Zhou C, Zhang Q, Zhang M, et al. In-situ Raman spectroscopy study of thermal mismatch stress and negative thermal expansion behaviours of ZrW2O8 in ZrW2O8/Al composite[J]. Journal of Alloys and Compounds, 2017, 718: 356-360.

[7] Zhou C, Zhang Q, Liu S, et al. Thermal mismatch strain induced disorder of Y2Mo3O12 and its effect on thermal expansion of Y2Mo3O12/Al composites[J]. Physical Chemistry Chemical Physics, 2017, 19(19): 11778-11785.

[8] Liu S, Zhou C*, Wang Y, et al. Processing combustion synthesized Mg0.5Zr2(PO4)3 nanopowders to thin films as potential solid electrolytes[J]. Electrochemistry Communications, 2020, 116: 106753.

[9] Kargar A, Sukrittanon S, Zhou C, et al. GaP/GaNP heterojunctions for efficient solar‐driven water oxidation[J]. small, 2017, 13(21): 1603574.

[10] Yu Z, Yang W*, Zhou C, et al. Effect of ball milling time on graphene nanosheets reinforced Al6063 composite fabricated by pressure infiltration method[J]. Carbon, 2019, 141: 25-39.

[11] Wu G*, Yu Z, Jiang L, Zhou C,et al. A novel method for preparing graphene nanosheets/Al composites by accumulative extrusion-bonding process[J]. Carbon, 2019, 152: 932-945.


专 利

[1] 一种反钙钛矿锰氮化合物/铝双连通结构复合材料及其制备方法,授权号:ZL201910152167.2, 排名第一。

[2] 一种反钙钛矿锰氮化合物/铝复合材料及其制备方法, 授权号:ZL201910152185.0, 排名第一。

[3] 一种碳化硅纳米线混杂增强钨酸锆/铝复合材料及其制备方法,授权号:ZL201911181682.X, 排名第一。

[4] 基于三向约束变形的高体积分数SiC纳米线增强铝基复合材料致密化装置及方法, 授权号:ZL201911183020.6, 排名第一。

[5] 一种Ti2AlC增强铝基复合材料及其制备方法, 授权号:ZL 201911181709.5, 排名第一。

[6] 一种具有原位双相增强铝基复合材料的制备方法, 授权号:ZL201911181707.6, 排名第一。


科研项目

[1] 国家自然科学基金,磁性负热膨胀及铝基复合材料化学调控与机理研究,2023-2025,主持。

[2] 中广核技术开发项目,核燃料元件制造工艺基础研究,2023-2024,主持。

[3] 中央高校基本科研业务费,金属基复合材料低热膨胀性能调控, 2022-2024,主持。

[4] 中国博士后科学基金(特别资助),SiCnw增强ZrW2O8/Al复合材料的显微组织优化研究、2019-2022年、主持。

[5] 黑龙江省自然科学基金,超低膨胀高强铝基复合材料、2020-2023年、主持。

[6] 中国博士后科学基金(面上),超低膨胀 ZrW2O8/Al 复合材料界面与相变调控机理研究、2018-2020年、主持。

[7] 黑龙江省博士后资助经费,低膨胀高强ZrW2O8-nano SiCp双相混杂增强铝基复合材料、2018-2021年、主持。

[8] 中国高校科研创新基金、钨酸锆增强铝基复合材料设计及低膨胀原理、2018-2020年、主持。

[9] 黑龙江省头雁计划、低膨胀高导热铝基复合材料纳米界面调控研究、2020-2021年、主持。


指导研究生情况

获校优秀论文2人次,国家奖学金3人次。指导/协助指导研究生均在华为、央企、各大高校等从事材料相关专业工作。